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A paradox of hovering insects
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A paradox concerning the flight of insects in two-dimensional space is identified:
insects maintaining their bodies in a particular position (hovering) cannot, on average,
generate hydrodynamic force if the induced flow is temporally periodic and converges
to rest at infinity. This paradox is derived by using the far-field representation of
periodic flow and the generalized Blasius formula, an exact formula for a force that
acts on a moving body, based on the incompressible Navier–Stokes equations. Using
this formula, the time-averaged force can be calculated solely in terms of the time-
averaged far-field flow. A straightforward calculation represents the averaged force
acting on an insect under a uniform flow, −〈V 〉, determined by the balance between
the hydrodynamic force and an external force such as gravity. The averaged force
converges to zero in the limit 〈V 〉 → 0, which implies that insects in two-dimensional
space cannot hover under any finite external force if the direction of the uniform flow
has a component parallel to the external force. This paradox provides insight into the
effect of the singular behaviour of the flow around hovering insects: the far-field wake
covers the whole space. On the basis of these assumptions, the relationship between
this paradox and real insects that actually achieve hovering is discussed.

1. Introduction
Theoretical studies of animal locomotion in fluids based on fundamental equations

have thus far been limited to cases where the fluid flow has a low Reynolds number
or where the flow is inviscid (Childress 1981). Although it is possible to evaluate
exactly the hydrodynamic force generated by steady wings, this calculation is not
possible in the case of flying insects, even if details of the wing properties and
the flapping motion are provided. Insects flap their wings periodically to generate
vortices separated from the wing; these are essential to achieve high performance
in force generation and manoeuvring (Dudley 2000). However, this induced flow is
unsteady and rotational, characteristics that are outside the scope of wing theory.
From experimental observations, several flapping-flight mechanisms for insects have
been proposed to explain particular local interactions between separation vortices
and wings: the Weis-Fogh mechanism (Weis-Fogh 1973; Maxworthy 1979; Edwards
& Cheng 1982), the delayed stall mechanism (Dickinson & Götz 1993; Ellington
et al. 1996), and the wake capture mechanism (Dickinson, Lehmann & Sane 1999;
Sane & Dickinson 2002). The generated hydrodynamic force is theoretically evaluated
by applying quasi-steady-state assumptions with typical values of the lift and drag
coefficients for moving wings (Dickinson et al. 1999; Wang, Birch & Dickinson
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2004), the single-vortex approximation based on inviscid fluid behaviour (Edwards
& Cheng 1982), or direct numerical simulation (Liu et al. 1998; Wang et al. 2004;
Iima 2007). An analysis of related problems can be found, for example, in Childress,
Vandenberghe & Zhang (2006) and Pesavento & Wang (2004). However, owing to the
complexity of analysing the mechanism of vortex separation and the dynamics of the
separation vortices, no theory that is purely based on the Navier–Stokes equations
for flapping flight using vortices, without relying on numerical calculation, has thus
far been proposed, although the flow around a body oscillating with small amplitude
has been analysed (Riley 1967).

This difficulty can be overcome for the flapping flight of insects by focusing on
the far-field flow. Several authors have derived exact unsteady force formulae in two-
and three-dimensional space by calculating the rate of change of momentum in a
controlled volume (Imai 1974; Noca, Shiels & Jeon 1997; Wu, Pan & Lu 2005).
Such formulae make evaluation of the force acting on a body moving through a fluid
governed by the Navier–Stokes equations possible. In particular, Imai (1974) proposed
a generalized Blasius formula in two-dimensional space, by which the unsteady force
can be calculated in terms of only an integral on the control surface, which can be
chosen in the far field, and an integral on the body surface. A three-dimensional
formula with the same properties was proposed by Wu et al. (2005). Because the far-
field flow can be evaluated using the Oseen equation (Chadwick 1998; Chadwick &
Fishwick 2007), for which a general solution is obtained, the unsteady force generated
by flapping wings can be evaluated even if separation vortices are formed.

Several two-dimensional models for insect free-flight have a universal structure for
the critical point near hovering, suggesting a singularity. A model that involves two
wings flapping vertically (Iima & Yanagita 2001a, b, 2005, 2006) as is commonly
observed during butterfly hovering (Ellington 1984; Betts & Wootton 1988), has been
studied numerically. The centre of mass (CM) of the model is allowed to move along a
vertical line, according to the hydrodynamic force generated by the separation vortices
and the external force (gravity). It has been shown that hovering is impossible in this
model in the following sense: if the magnitude of the external force is arranged such
that the CM velocity approaches zero, the model loses stability when the CM velocity
falls below a critical value, being attracted to another steady state with a CM velocity
of opposite sign. (Iima & Yanagita 2006). Another model involving a single wing
flapping horizontally (Iima 2007), as observed during the hovering of many insects
(Ellington 1984; Dudley 2000), yields qualitatively the same result, although the
flapping motion and generated vortex pattern are qualitatively different (Iima 2007).
These numerical results suggest that there exists some singularity in two-dimensional
hovering; however, no theoretical argument to this effect has yet been presented.

In this paper, a paradox for the force acting on a hovering insect is proposed in
order to discuss the singularity. If the period-averaged velocity of the insect (〈V 〉) is
constant, the period-averaged force acting on the insect (〈F 〉) can be evaluated by
considering the force generated by a flapping wing under a uniform flow of −〈V 〉.
Assuming that the flow is temporally periodic and converges to −〈V 〉 at infinity, it is
shown that 〈F 〉 converges to zero as ∼ (log |〈V 〉|)−1 in the limit of hovering: 〈V 〉 → 0.
This result appears paradoxical because, in reality, insects look as though they are
hovering when 〈V 〉 is zero. This paradox provides insight into the necessary criteria
for hovering.

This paper is organized as follows. Section 2 is devoted to explaining the physical
aspects of the problem to be proved mathematically in the subsequent sections. The
far-field flow for a flying insect is obtained in § 3 as a general form of the far-field
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Figure 1. (a) Configuration of the problem: an insect flies in a two-dimensional space under
an external force. A steady state is assumed. (b) Movement of the coordinate with the averaged
velocity. For this coordinate, the insect is stationary under a uniform flow −〈V 〉. Because of the
steady-state assumption, the flow induced by the flapping motion is periodic in this coordinate.
The vortices generated are drawn schematically.

flow for an oscillating body. The average force acting on the insect is obtained in
§ 4 using the far-field flow and a generalized Blasius formula. In § 5, the limit of the
averaged force is calculated, leading to the theoretical paradox. In § 6, the factors that
enable real insects to hover are discussed, based on the assumptions that lead to the
paradox. The validity of the assumptions required for this calculation is evaluated
in terms of fluid mechanics and biology. Because a proof of the generalized Blasius
formula for the force has not been given in the literature (Imai 1974), this is provided
in the Appendix.

2. Configuration and physical arguments
2.1. Problem

We consider an insect in two-dimensional space flying under the influence of a
constant external force, Fe.f., such as gravity. The wing of the insect generates
separation vortices, by which it generates the unsteady hydrodynamic force F. The
velocity of the insect’s CM, V , is determined by the equation of motion:

M
dV
dt

= F + Fe.f., (2.1)

where M is the total mass of the insect (figure 1a).
Here, we assume steady-state conditions, for which V , F, and the flapping motion

are temporally periodic. The period-average of (2.1) gives the following expression:

0 = M
d〈V 〉
dt

= 〈F〉 + Fe.f., (2.2)

where 〈∗〉 ≡ (1/T )
∫ t+T

t
∗dt denotes the period-average (T is the period). Here, we

consider flight where a component of the uniform flow is parallel to a non-zero
external force, that is, Fe.f. · 〈V 〉 	= 0 if 〈V 〉 	=0. We address the question of whether
the averaged velocity (〈V 〉) can be zero or asymptotically zero, if we control both
the flapping motion (F) and the non-zero external force (Fe.f.). Although the answer
might seem to be in the affirmative at first glance, even for the two-dimensional
case, analytical calculation based on the Navier–Stokes equations leads to a negative
conclusion. This is the paradox presented in this paper. Although a detailed derivation
is given in the following sections, an intuitive argument based on the geometry of the
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Figure 2. Schematic diagram of the wake. (a) The case in which the velocity of the uniform
flow is positive. The wake is generated in the positive x-direction. (b) The case in which the
velocity of the uniform flow is negative. The wake is generated in the negative x-direction.

wake structure, the region where vorticity cannot be disregarded, is useful to explain
the essence of the paradox.

In a coordinate system moving with speed 〈V 〉, the period-averaged position of the
insect’s CM is stationary (figure 1b). In this coordinate system, the insect is situated
under a uniform flow −〈V 〉, and the flapping of its wings generates a vortex structure
mainly in the downstream direction. In the far-field flow, where the flow is described
by the Oseen equation, the vortex structures take the form of a parabolic wake, as
shown in figure 2(a) (see also § 3). If we suppose that the direction of the uniform
flow is opposite for some reason (for example, the sign of 〈V 〉 is altered by controlling
the flapping motion), then the direction of the wake is also reversed (figure 2b). Thus,
a continuously changing 〈V 〉 that crosses zero requires a directional change of the
wake structure. However, when an insect achieves hovering in reality, that is, 〈V 〉 =0,
the vortex structure cannot be eliminated. The far-field is governed by the Stokes
equation, and the wake covers the entire space in the sense that the vorticity decays as
a power of r (§ 6.1.2). This implies that the wake structure is not parabolic. Because
the averaged force is determined only by the far-field (§ 4), this wake structure may
lead to anomalous behaviour of the averaged force.

2.2. Basic equations

We consider a two-dimensional incompressible flow. Let us assume that a wing of
arbitrary form moves in an infinite space in a uniform flow of velocity U = − 〈V 〉
streaming parallel to the x-axis. The boundary of the wing is denoted by B (figure 3).
We assume that the wing moves periodically in time, and that the induced flow
(u(x, t)) is also temporally periodic: u(x, t) = u(x, t +T ), where T ( < ∞) is the period.
The flow velocity is also assumed to remain finite throughout the region occupied by
the fluid. The flow is governed by the incompressible Navier–Stokes equations:

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p + ν�u + K , (2.3)

∇ · u = 0, (2.4)

where u = (u, v) is the velocity, ρ is the density, p is the pressure, ν is the kinematic
viscosity, and ∇ = (∂/∂x, ∂/∂y). We assume that an external force K has a potential,
and that K can be included in the pressure.

By taking the curl of (2.3), we obtain the vorticity equation:

∂ω

∂t
− ν�ω =

∂(Ψ, ω)

∂(x, y)
, (2.5)
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Figure 3. Configuration of the problem. A wing bounded by B moves periodically in a
uniform flow. An arbitrary closed path including B is shown by C. A circle with a very large
radius is indicated by the dotted line, where the region outside the circle is regarded as far-field
in which the deviation of the flow velocity from (U, 0) is small.

where ω = ∂v/∂x − ∂u/∂y is the vorticity and Ψ is a streamfunction such that:

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
(2.6)

(Imai 1951).
The period-averaged force, 〈F〉 = (〈Fx〉, 〈Fy〉), acting on B is given by:

〈F〉 =
1

T

∫ t+T

t

Fdt, F = (Fx, Fy), (2.7)

Fi =

∫ ∫
B

σij (t)njdS (i = x, y), (2.8)

where σij = − pδij + μ(∂uj/∂xi + ∂ui/∂xj ) is the component of the stress tensor
(ux = u, uy = v), μ = ρν is the viscosity coefficient, n = (nx, ny) is the outward unit
normal vector on B , and δij is the Kronecker delta.

We aim first to obtain the expression for 〈F〉 in terms of the characteristics of
the far-field flow (§ 4), and secondly to calculate the asymptotic behaviour of 〈F〉 as
U → 0 (§ 5).

3. Far-field flow for the flapping wing
3.1. Far-field vorticity field: first approximation

First, we consider the far-field flow from an oscillating body (the wing). We take
the origin of the coordinate O at a point near the body and assume that the flow
converges to a uniform flow, (U, 0), such that:

u = U ex + v, lim
|r |→∞

v = 0, (3.1)

where ex is a unit vector in the x-direction.
Taking a circle with a large radius (R) centred at O , we consider the equation for

v outside the circle. Equation (3.1) implies that |v| � U for the region outside the
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Figure 4. Relationship between k, Ωn and sn.

circle. If we write the streamfunction Ψ as

Ψ = Uy + ψ, (3.2)

we obtain
∂ω

∂t
+ 2νk

∂ω

∂x
− ν�ω =

∂(ψ, ω)

∂(x, y)
, (3.3)

where k =U/2ν and v is determined by ψ by the same relation as (2.6).
Assuming that ψ and ω are small, we introduce a small parameter ε which is of

the order of |v|/U , and expand ω and ψ as follows:

ω = εω1 + ε2ω2 + ε3ω3 + · · · , (3.4)

ψ = εψ1 + ε2ψ2 + ε3ψ3 + · · · . (3.5)

Substituting these equations into (3.3), and taking O(ε)-terms, we obtain the Oseen
equation:

∂ω1

∂t
+ 2νk

∂ω1

∂x
= ν�ω1. (3.6)

The periodic solution of (3.6) is obtained by Fourier expansion. If we assume a
periodic solution with a finite period T , ω1(x, t) is represented by

ω1(x, t) =

∞∑
n=−∞

An(x)eiΩnt , Ωn =
2π

T
n (n ∈ Z), (3.7)

where An(x) = A−n(x) (A is the complex conjugate of A). If we write An(x) = Bn(x)ekx ,
the equation necessary to determine Bn(x) is:

(
� − s2

n

)
Bn = 0, s2

n = k2 + i
Ωn

ν
. (3.8)

If sn = rne
iθn , we obtain Re(sn) ≡ αn = rn cos θn and Im(sn) ≡ βn = rn sin θn, where Re

and Im denote the real and imaginary parts, respectively (figure 4).
We take 0 < arg(s2

n) < π/2 such that αn > 0. For later convenience, we show that:

αn < αn+1. (3.9)

The proof of this is as follows. First, the definition (3.8) gives Re(s2
n) = Re(s2

n+1), which
reduces to:

α2
n − α2

n+1 = β2
n − β2

n+1. (3.10)
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Because θn = (1/2) tan−1(Ωn/(νk2)), the inequality θn+1 > θn holds. The definition
(3.8) gives rn+1 >rn. Together, these inequalities give:

βn = rn sin θn < rn+1 sin θn+1 = βn+1. (3.11)

The inequality (3.9) follows from (3.10) and the inequality (3.11).
Because αn > 0 and k2 = Re(s2

n) = α2
n − β2

n � α2
n, the following inequalities are

obtained:

αn > 0,
αn

k
� 1 (the equality holds only when βn = 0). (3.12)

The solution of (3.8) that satisfies lim|x|→∞ Bn = 0 is given as:

Bn(z) =

∞∑
m=−∞

Rn,mH (1)
m (z)eimθ , z = isnr, (3.13)

where Rn,m are constants, H (1)
m is the Hankel function of the first kind, and (r, θ) is

the position in polar coordinates. We note that the asymptotic form of H (1)
m is:

H (1)
m (z) ∼

√
2

πz
exp

[
i
(
z − 1

2
π m − 1

4
π
)]

(r → ∞). (3.14)

In summary, the periodic solution of (3.6) is given by:

ω1(x, t) =

∞∑
n=−∞

∞∑
m=−∞

ωm,n(x, t), (3.15)

ωm,n(x, t) = Cm,ne
iΩntekxeimθH (1)

m (z), (3.16)

where Cm,n are constants.

3.2. Far-field wake region

We obtain the wake region, i.e. the region where ωm,n is significant, in the far region
where the flow has been described well by (3.6).

Because z = isnr = iαnr − βnr , |H (1)
m (z)| = |H (1)

m (isnr)| � C ′|
√

2/(πisn) | r−1/2 exp(−αnr)
for large r where C ′ is a constant. Using (3.16), and letting pn = αn/k and x = r cos θ ,
we obtain:

|ωm,n| � Cmax r−1/2 exp[−kr(pn − cos θ)], (3.17)

where Cmax = maxm,n|C ′√2/π i snCm,n|.
Let us consider the region defined by the inequality

kr(pn − cos θ) < C, (3.18)

where C is a constant. In this region (referred to hereinafter as the wake), ωm,n is
significant. Outside this region, ωm,n decays faster than exponentially as r increases.
Because pn � 1 by the condition (3.12), the region determined by (3.18) is given as
follows.

(i) The case of pn = 1 (n= 0)
In this case, the mode ωm,0 corresponds to the solution of the steady Oseen equation.
The boundary of the region determined by (3.18) is:

x =
k

2C
y2 − C

2k
, (3.19)

which takes the form of a parabola (figure 5a). We note that the vorticity decays
slowly (∼ r−1/2) along the positive x-axis, but the contribution of this must be
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Figure 5. Wake regions for each mode (indicated by shading). (a) The case of pn = 1.
(b) The case of pn > 1.

calculated. A similar situation occurs when calculating the drag acting on a body in
a uniform flow, where the contribution of vorticity is significant (Imai 1951).

(ii) The case of pn > 1 (n 	= 0)
The boundary of the region determined by (3.18) is:

k2
(
p2

n − 1
) {

x − C

k
(
p2

n − 1
)
}2

+ k2p2
ny

2 =
p2

n

p2
n − 1

C2, (3.20)

which is an ellipse (figure 5b).
The inclusion relation among An(n � 1), the wake determined by ωm,n, is:

A1 ⊃ A2 ⊃ . . . , (3.21)

which can be shown by using the inequality (3.9).
We now consider what happens to An in the limit k → 0. Here, An(n � 1) is

confined to a bounded region, which can be demonstrated as follows. We define that

l−1
n ≡ lim

k→0
kpn = lim

k→0
αn =

√
Ωn

2ν
, (3.22)

and note that ln < l1 =
√

νT /π < ∞. Because An(n � 1) is included in the rectangular

[
− C

k(pn + 1)
,

C

k(pn − 1)

]
×

⎡
⎣− C√

k2
(
p2

n − 1
) ,

C√
k2

(
p2

n − 1
)
⎤
⎦,

An(n � 1) is confined to the bounded region [−Cl1, Cl1] × [−Cl1, Cl1] in the limit
k → 0. However, the boundary of A0 diverges because k−1 diverges (see figure 5 and
§ 6.1.2 for the case where k =0(〈V 〉 = 0)).

By using (3.15) and (3.16), we obtain:

〈ω1〉(x) =

∞∑
m=−∞

ωm,0, (3.23)

ω′
1(x, t) ≡ ω(x, t) − 〈ω1〉(x) =

∞∑
n=−∞,n	=0

∞∑
m=−∞

ωm,n. (3.24)

Therefore, the wake region for 〈ω1〉 is inside the parabola A0, while the wake
region for ω′

1 is in the elliptical region A1. Outside these regions, 〈ω1〉 and ω′
1 reach

zero at a faster than exponential rate as the distance from each region increases.
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3.3. Higher-order calculations

Taking the O(ε2)-terms in (3.3) with the expansions (3.4) and (3.5), we obtain:

∂ω2

∂t
+ 2νk

∂ω2

∂x
− ν�ω2 =

∂(ψ1, ω1)

∂(x, y)
. (3.25)

The results given in § 3.2 indicate that ω′
1 is significant only in the elliptical region

A1. Therefore, we change the radius of the circle from R to R′ such that the circle
includes A1. Then, ω1 � 〈ω1〉 and ψ1 � 〈ψ1〉 outside the circle. Therefore, the flow
outside the circle can be expressed by the following equation:

∂ω2

∂t
+ 2νk

∂ω2

∂x
− ν�ω2 =

∂(〈ψ1〉, 〈ω1〉)
∂(x, y)

. (3.26)

Because the right-hand side of (3.26) does not vary with respect to time, the equation
for ω′

2 does not include the nonlinear term ∂(〈ψ1〉, 〈ω1〉)/∂(x, y). Therefore, ω′
2 satisfies

the same equation as (3.6), ω′
2 is confined within an ellipse, and the expression for

ω′
2 is the same as (3.24). In this sense, it is necessary to consider only (3.24) for

time-dependent vorticity fluctuations: ω′
2 can be included in ω′

1.
For the time-averaged component, 〈ω2〉, the higher-order equation is the same as

that for the steady flow studied by Imai (1951). We can apply a similar analysis to
the higher-order terms, enabling us to conclude that: first, the asymptotic behaviour
for 〈ω〉 is determined by the steady Navier–Stokes equation, and secondly, the region
where ω′ is significant is bounded. Outside this region, we can regard ω as equal
to 〈ω〉.

4. Averaged force acting on an insect with flapping wings
In this section, we give an exact formula for the averaged force acting on a

periodically oscillating body in a viscous fluid by applying a generalized Blasius
formula. To derive this result, we require an exact expression for the force acting on a
body undergoing arbitrary motion in incompressible, unsteady, viscous and rotational
flows.

The force F acting on a body undergoing arbitrary motion in a viscous fluid in
two-dimensional space is given by Imai (1974) in the following complex form:

F = F0 − d

dt
P, (4.1)

F0 = − 1
2
iρ

∮
C

W
2
dz − 2μ

∮
C

z
∂ω

∂z
dz + iρ

∮
C

ωzdΨ, (4.2)

P = −iρ

∮
C

zWdz − ρ

∮
B

zdΨ, (4.3)

where F = Fx + iFy , W = u− iv is the complex velocity, B is the boundary of the body,
C is a time-independent arbitrary closed curve including the body, and S is the region
bounded by B and C (figure 6). A proof for (4.1)–(4.3) is given in the Appendix. We
note that all of these functions contain z and z as independent variables, meaning that
W is not analytic in general because we consider the rotational flow. The relationship
between W, Ψ and ω is:

W = 2i
∂Ψ

∂z
, ω = −2i

∂W

∂z
, (4.4)

which can be easily verified, as shown in the Appendix.
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Figure 6. Schematic diagram of the body bounded by B , the control volume C, and the
region bounded by B and C.

In this paper, we assume that the flow and the body motion are time-periodic with
a finite period T . Any time-periodic function F (x, t) can be separated into the mean
component,

〈F 〉(x) ≡ 1

T

∫ t+T

t

F (x, t)dt,

and the fluctuation component, F ′ ≡ F − 〈F 〉:
F (x, t) = 〈F 〉(x) + F ′(x, t). (4.5)

If we assume that A and B are both time-periodic, then:

〈AB〉 = 〈A〉〈B〉 + 〈A′B ′〉, (4.6)

because 〈A′〉 = 〈B ′〉 = 0.
When we assume that W, ω, Ψ and P are time-periodic, then separating W, ω and

Ψ into their mean and fluctuation components, substituting them into (4.1)–(4.3), and
using (4.6) gives:

〈F 〉 = − 1
2
iρ

∮
C

〈W 〉2dz − 2μ

∮
C

z
∂〈ω〉
∂z

dz + iρ

∮
C

〈ω〉z〈dΨ 〉

− 1
2
iρ

∮
C

〈W ′2〉dz + iρ

∮
C

z〈ω′dΨ ′〉. (4.7)

Because of the linear relationship between W and ω [(4.4)], (∂/∂z)W ′ = − iω′/2.
As was shown in § 3, ω′ is significant only in the ellipse A1 in the sense that the
value of ω′ at a point (r, θ) outside A1 is bounded, because |ω′| <C ′ exp(−kD′r),
where C ′ and D′ are constants. Thus, if we take C as a large circle with radius
R that includes A1, we can assume that ω′ = 0 on C because the decay of ω′ is
bounded exponentially. Therefore, (∂/∂z)W ′ = 0 outside A1, which implies that W ′

satisfies the Cauchy–Riemann relation, W ′ =W ′(z, t). Because W → U as r → ∞,
W ′ = a1z

−1 + O(z−2). Therefore, we find that:∮
C

W
′2
dz = 0. (4.8)

Furthermore, because ω′ =0 on C, then:

iρ

∮
C

z〈ω′dΨ ′〉 = 0. (4.9)
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Thus, (4.7) can be simplified to:

〈F 〉 = − 1
2
iρ

∮
C

〈W 〉2dz − 2μ

∮
C

z
∂〈ω〉
∂z

dz + iρ

∮
C

〈ω〉z〈dΨ 〉 (R → ∞). (4.10)

We note that (4.8), (4.9), and (4.10) are valid in the limit R → ∞, although their
correction terms due to ω′ are at most O(R exp(−kD′R)) which rapidly converges to
zero.

Equation (4.10) implies that the averaged force is described by the mean flow
only. The general expression for the force acting on a body in a steady viscous flow
has been given by Imai (1951), and is equivalent to (4.10) if we replace the mean
components with the corresponding terms for the steady flow. Therefore, applying
Imai’s result, we obtain:

〈F 〉 = ρU (〈m〉 + i〈Γ 〉), (4.11)

where m/2π and Γ/2π represent the strength of the source/sink and of the circulation,
respectively, for the complex velocity potential f (z) for the region outside the wake:

f (z) = Uz +
m + iΓ

2π
log z − i

k1/2m2

4π1/2U

1

z1/2
+

(√
3km3

8π2U 2
− m(m − iΓ )

2π2U

)
log z

z
+

a + ib

z
· · · ,

(4.12)

where a and b are constants, and k =2U/ν(ν is the kinematic viscosity) (Imai 1951).
In (4.11), the effect of the flapping motion on the flow is embodied by 〈m〉 and 〈Γ 〉.
In particular, 〈m〉 can be both positive and negative, which is different to the case in
which the force acts on a stationary body.

5. Limit of the averaged force acting on the insect for 〈V 〉 → 0

In this section, we present the crux of this paper: the derivation of the paradox.
We analyse the forces acting on an insect when the speed of flight is very slow, as
in the case of hovering. Supposing that the insect is in a steady state (periodic state)
with constant 〈V 〉, the coordinates can be altered such that the time-averaged CM is
at the origin.

Taking the x-axis as the direction of the averaged speed and B as the boundary of
the wing of the insect, the averaged force 〈Fx〉 is obtained by:

〈Fx〉 = −ρ〈V 〉〈m〉, (5.1)

which is derived from (4.11).
To estimate 〈m〉, we consider the far-field flow, which is approximated well by the

Oseen equation. The general solution of the steady Oseen equation (the temporal
average of (3.6)) is:

〈W 〉(x, y) = ekx

∞∑
n=−∞

CnKn(kr)eniθ +
df

dz
, (5.2)

where Cn are constants, Kn(kr) are modified Bessel functions of the second kind,
r = |z|, and f (x, y) = f (z) (z = x + iy) is an arbitrary analytic function of z (Imai
1954). Because f (z) is the velocity potential outside the wake, we substitute (4.12)
into (5.2) and replace U = − 〈V 〉 and m = 〈m〉.

The total flux through a circle of extremely large radius is zero owing to the
incompressible condition. In complex representation, the flux Q is calculated using
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Q =Im
(∮

C
Wdz

)
, where C is the circle with large radius R. If we denote the first

term on the right-hand side of (5.2) as Wwake, we obtain∮
C

Wwakedz = i

∞∑
n=−∞

CnKn(kR)R

∫ 2π

0

ekR cos θe(n+1)iθdθ (5.3)

= 2πiR

∞∑
n=−∞

CnKn(kR)In+1(kR), (5.4)

where In(kr) ≡ (1/2π)
∫ 2π

0
ekr cos θeinθdθ is a modified Bessel function of the first kind.

Using (4.12) and (5.4), the condition limR→∞ Q =0 reduces to:

∞∑
n=−∞

π

k
Re(Cn) + 〈m〉 = 0, (5.5)

where the asymptotic forms Kn(z) =
√

(π/(2z))e−z(1 + O(z−1)) and
In(z) = (ez/

√
2πz)(1 + O(z−1)) for large |z| are applied.

Let us consider the region where the flow is approximated well by the Oseen
equation. In this region, we consider a point P0 such that its radial coordinate is
minimum, and we set the radial coordinate r = r0. In the limit V → 0 (k → 0), kr0

must converge to zero for the following reason. If k = 0, then (3.6) becomes the heat
equation, which is isotropic. However, the term ekx =ekr cos θ in (5.2) introduces an
anisotropic effect and hence must vanish as k → 0, which results in kr0 → 0 as k → 0.
In the limit 〈V 〉 → 0 (kr0 → 0), Kn has the following asymptotic forms:

K0(kr0) � − ln
(

1
2
kr0

)
, (5.6)

Kn(kr0) � 1
2
(n − 1)!

(
1
2
kr0

)−n
(n � 1). (5.7)

Equations (5.6) and (5.7) diverge as 〈V 〉 → 0 (kr0 → 0).
Applying (5.6) and (5.7) to (5.2), the constant Cn must satisfy the following order

for small k:

C0 = O

(
1

ln(kr0)

)
, (5.8)

1
2
C1e

iθ − 〈m〉
2π

= O(kr0), (5.9)

Cn = O((kr0)
n) (n � 2). (5.10)

Equations (5.8)–(5.10) and (5.5) lead to:

〈m〉 =
D0

k ln(kr0)
+ O(kr0), (5.11)

where D0 is a constant. Using (5.1), (5.5) and (5.11), we obtain:

〈Fx〉 = 2ρνk〈m〉 =
D′

0

ln(kr0)
+ O(kr0), (5.12)

where D′
0 is a constant independent of kr0 and 〈V 〉. The limit of (5.12) for 〈V 〉 → 0

is:

lim
〈V 〉→0

〈Fx〉 = lim
kr0→0

〈Fx〉 = 0. (5.13)
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Figure 7. Plot of Fx/D
′
0 for ν = 10−5 and r0 = 1.

We recall that we have assumed a steady flapping flight against an external force:
Fe.f. · 〈V 〉 	= 0. Equation (2.2) then gives an expression that allows the flapping motion
to be determined:

〈Fx〉 = −(Fe.f.)x = − Fe.f. · 〈V 〉
|〈V 〉| 	= 0. (5.14)

The result (5.13) implies that this equation does not have any solution in the limit
〈V 〉 → 0, regardless of the inclusion of detail concerning the flapping motion. In
other words, under the force of gravity, the flapping of the wings of insects should be
incapable of generating the net force required for the averaged velocity to be zero.

6. Discussion
The result shown above in (5.13) appears to be paradoxical because real insects

appear to hover successfully by flapping their wings. In this section, we examine the
validity of the assumptions used in the above calculation and discuss the factors
that are important in order for an insect to hover. We evaluate the arguments for
and against representing the hovering of a real insect as an exactly stationary state.
As will be clarified, the paradox outlined above need not lead to any problems in
practice. Nevertheless, the theoretical results presented here describe essential aspects
of flapping flight and will be useful for enhancing our knowledge of this type of
motion, with the eventual aim of using it in the design of machinery with the capacity
to hover.

6.1. Unsteady hovering

If it is assumed that a real insect cannot be stationary while hovering, there are two
possibilities: 〈V 〉 	= 0 and 〈V 〉 = 0.

6.1.1. The case of 〈V 〉 	= 0

First, hovering in a practical (biological) sense does not require that 〈V 〉 must be
exactly zero. Even if 〈V 〉 	= 0, our theory is able to accommodate the practical sense
of hovering because the convergence of the averaged force for 〈V 〉 → 0 is very slow:
Fx = D′

0/ log(2r0|〈V 〉|/ν). In figure 7, a plot of Fx/D
′
0 is shown for ν = 10−5 (m2 s−1),

a typical value for air, and it can be roughly estimated that r0 = 1 [m], which is of
the order of a hundred times larger than the size of many insects. In this estimation,
the leading term in (5.12) becomes dominant with respect to the second term when
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〈V 〉 < 10−6 [m s−1], and the convergence of the averaged force is slow even for this
range.

A practical definition of hovering is J ≡ 〈V 〉T/(2ls) < 0.1, where ls is the sweeping
length of the flapping (J is the advance ratio; see Dudley 2000). Even for butterflies,
for which there is a strict range limitation 〈V 〉 owing to the long flapping period,
this definition implies that they achieve hovering when 〈V 〉 is less than the order of
10−2 [m s−1], according to the estimation that T =10−1 [s] and ls = 10−2 [m].

Therefore, such force reduction takes place over a limited range of velocities.
However, discussing this limitation will be useful in order to understand that critical
behaviour can occur as 〈V 〉 → 0. For example, numerical simulation yields an N-
shaped curve for the hydrodynamic force generated by a horizontally flapping wing
as a function of the speed of a vertical uniform flow (Iima 2007). This N-shape can be
interpreted as representing a smoothing-out of the singularity owing to the limitations
that are intrinsic to the numerical simulation, although a detailed comparison should
be performed (in the simulation, a non-periodic flow is observed when 〈V 〉 =0; see
also section 6.1.2).

This problem would become more serious when developing a flapping-flight machine
that can hover for an extended period of time. The above estimate (〈V 〉 ∼ 10−6 [m s−1])
gives a one-day (∼ 105 [s]) increment in position of the order of 0.1 [m]. This
strategy would be appropriate for such a machine to achieve hovering if it were
able to sustain its weight under the force reduction due to the small 〈V 〉. However,
this would require a control system enabling the machine to return to its original
position by non-periodic wing motion, which is outside the scope of the present
theory.

6.1.2. The case of 〈V 〉 =0

One strategy that can be used to explain how hovering is achieved involves the
unsteady effect. This strategy may be followed using two different methods: the first
uses the unsteady term −(d/dt)P while the other uses the concept of non-periodicity.

The unsteady term −(d/dt)P in (4.1) does not affect the period-averaged force if
the flow is temporally periodic; however, if we consider unsteady and non-periodic
motion, this term generates hydrodynamic force. The following simple model might
be useful for illustrating this strategy. We first suppose that a wing is flapping
horizontally in a temporally periodic manner, making an inverted Kármán vortex
street that is observed during normal hovering (figure 8). We then imagine that the
flapping motion has been occurring for a finite time. In this case, the region of
non-zero vorticity is bounded, while a complex velocity potential exists outside this
region. The motion of the wing is assumed to be time-periodic, but the length of
the vortex arrays is assumed to be elongated by the flapping. In the simplest case,
we assume the vortex field to be comprised of two vertical vortex sheets of finite
length l(t) and with a strength of ±κ . The complex potential f (z) of the induced flow
is:

f (z) = −
∫ 0

−l

iκ log
z − (a + iy)

z − (−a + iy)
dy. (6.1)

In the far field (|z| � l), f (z) and W take the following forms:

f (z) � 2iκal

z
, W =

df

dz
= −2iκal

z2
. (6.2)



A paradox of hovering insects in two-dimensional space 221

y

–a

–κ +κ

a

xO

l (t)

Figure 8. A hovering model for which the finite-time effect is considered. Wing flapping
generates an inverted Kármán street, which is simplified to a pair of vortex sheets of finite
length l(t) along the y-direction. The strength for unit length is −κ (left) and +κ (right);
positive and negative signs are denoted by grey and white, respectively. Note that the actual
thickness of each vortex sheet is zero, although the diagram uses a finite thickness to indicate
the sign of the strength. The induced flow between the vortex sheets is downward, which
generates hydrodynamic force.

Using (4.2) and (4.3) by taking C to be a large circle, we then obtain:

F0 = 0, (6.3)

P = 4πiρκal(t) − ρ

∮
B

zdΨ. (6.4)

It should be noted that this simplified model is used merely to illustrate the idea. For
a general vorticity distribution, only the term proportional to z−1, the dipole term,
contributes to the integral. The only difference is the value of the coefficient. The
period-averaged hydrodynamic force for this model is:

F = 4πiρκaV, V =
l(t + T ) − l(t)

T
. (6.5)

We note that the second term in (6.4) drops out owing to the periodicity. This
example illustrates the generation of an unsteady force by the time derivative of P.
The definition of P actually includes the hydrodynamic impulse as the first term
in (A 36). However, this effect vanishes when P converges to a temporally periodic
function.

To understand the relationship between the assumption of periodicity and the other
assumptions involved in the calculation, it is necessary to consider what happens to
the flow field if a non-zero averaged force is generated when 〈V 〉 =0. In this case,
the elliptical regions An (n> 0) are still bounded (§ 3.2), but the parabolic regions
A0 cover the entire space, which means that the derivation in §§ 4 and 5 is not valid.
Therefore, this scenario requires separate discussion.
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When 〈V 〉 = 0, a velocity scale is required in order to evaluate the order of the

nonlinear term. To do this, we rewrite (2.5) using T ,
√

νT and U0 as typical values of
time, length and velocity, respectively:

∂ω̃

∂t̃
− �̃ω̃ = χ

∂(Ψ̃ , ω̃)

∂(x̃, ỹ)
, (6.6)

where ∗̃ are dimensionless variables and χ ≡ U0

√
T/ν. Because we assume that

lim|r |→∞ u = 0, the far field may be defined by the region outside the circle such that
χ � 1 when U0 is the maximum velocity in the region. Equation (6.6) shows that
the flow in the far field is governed by the Stokes equation as a first approximation.
We note that the discussion is similar to that in § 3.1 when n 	=0, because sn 	=0.
However, the modes n= 0 must be treated separately because sn =0. When n 	= 0,
a similar discussion leads to the result that |ωm,n| � Cmaxr

−1/2 exp(−αnr): the wake
region An is also bounded even if 〈V 〉 =0. Thus, we need only consider the mean flow.
According to the theory of two-dimensional steady Stokes flow by Imai (1972), the
far-field flow can be described using two analytic functions g(z) and h(z) as follows:

W = z
dg

dz
− g(z) +

dh

dz
, ω = −4Im

(
dg

dz

)
, (6.7a, b)

where

g(z) = −c log z +

∞∑
n=−∞

Dnz
n, (6.8)

h(z) = c(z log z − z) + (m + iκ) log z +

∞∑
n=−∞

Cnz
n, (6.9)

where c, Cn and Dn are constants. Because 〈V 〉 =0, we impose the condition that
limz→∞ W = 0, which leads to:

c = 0, Cn = 0 (n > 0), Dn = 0 (n > 0). (6.10)

Equation (6.7b) shows that the vorticity decays as a power of r , which is different to
the case in which 〈V 〉 	= 0. In this sense, the wake covers the entire space. To evaluate
the force acting on the wing, it is convenient to use the following form of the force
formula (4.1):

F =

{
−i

∮
C

pdz + 4μ

∮
C

∂2Ψ

∂z2
dz

}
− ρ

∮
C

W Im(Wdz) − dP0

dt
, (6.11)

which is easily derived using (A 18). P0 is defined in (A 26). The first two terms (in
brackets) in (6.11) are the same as those employed in the force formula for steady
Stokes flow (Imai 1972). The third term may be neglected owing to the low velocity,
and even if it is calculated, it vanishes because W = O(z−1). The fourth term in (6.11)
vanishes owing to the period averaging. Therefore,

〈F 〉 = 8πμc = 0. (6.12)

We hence obtain the same result, that 〈F 〉 =0 if 〈V 〉 =0. The coefficient c is related
to the strength of the two-dimensional Stokeslet (Imai 1972), which causes divergence
of the flow at infinity. Therefore, our assumption that the flow should converge
to become uniform excludes the possibility of the existence of a two-dimensional
Stokeslet as the source of the force. This reminds us of the Stokes paradox, that there
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is no solution to the Stokes equation for the translation of a cylinder with constant
velocity through an infinite mass of liquid (Lamb 1997, § 343). In the present paradox,
the Stokes paradox is extended to take periodic flow into account, and the conclusion
of the Stokes paradox corresponds to the zero averaged force for a hovering insect.

Another possible way of explaining hovering is to assume that the periodicity is
not actually satisfied. Even if the flapping motion is temporally periodic, the flow
can be non-periodic. This can be the case even when the Reynolds number is of
the order of 10 (Blondeaux & Guglielmini 2005). The experimental study of flapping
wings under uniform flows has shown that the vortex street generated by a flapping
wing exhibits a deflection. The deflection angle varies in a non-periodic manner when
the speed of the uniform flow is small (Knoller-Betz effect; Jones, Dohring & Platzer
1998). Measurements of induced flow for a tethered hawkmoth suggests some non-
periodicity (Sane & Jacobson 2006). These observations suggest that non-periodicity
occurs when 〈V 〉 is small. If we regard the non-periodic flow as the limit of the
periodic flow as T → ∞, then the wake region of the fluctuation component A1

covers the whole space because limT →∞ l1 = ∞. In this case, the net force depends on
the fluctuation component of the flow. Such fluctuation will occur when the Reynolds
number is large enough to cause instability in the flow. Another factor that might
give rise to fluctuation is that insects can change the amplitude of flapping to break
the periodicity of the flow, which implies that an active control method is necessary
to achieve hovering flight.

6.2. Steady hovering

We now consider the scenario in which real insects achieve hovering even if the flow is
temporally periodic and 〈V 〉 = 0 in the exact sense. In this case, the limitations of two-
dimensional treatments should be considered. The proof is based on the assumption
that the flow in the far field is decomposed into a potential velocity and a wake
velocity. This assumption is valid for two-dimensional flow with general Reynolds
numbers. However, for three-dimensional flow it is not generally valid (Chadwick
1998) and in this case the flow in the far field should be carefully calculated; this will
be considered elsewhere.

7. Concluding remarks
We have presented the paradox that a hovering insect cannot generate non-zero

averaged force in two-dimensional space if the induced flow is temporally periodic.
With the help of a generalized Blasius formula (Imai 1974), the averaged force acting
on a periodically oscillating body can be evaluated solely in terms of the far field
time-averaged flow. We have shown that the averaged force acting on the insect
becomes zero as 〈V 〉 → 0, where 〈V 〉 is the averaged velocity of the insect. This
suggests that the periodic flapping motion does not generate a non-zero net force.

The derivation of this paradox demonstrates that the fluctuation component of
the far field for any temporally periodic flow is confined to a finite region. This fact
enables us to evaluate the averaged force in the same way as the force acting on a
stationary body, except for the sign of 〈m〉.

Several problems that occur in a near-hovering state are revealed by this paradox;
to achieve hovering, at least one of our assumptions must be broken. The assumption
of periodicity may be related to the importance of some control system. As discussed
in § 6, non-periodic flow will actually lead to the generation of hydrodynamic force
during hovering. Real insects may control the flapping of their wings during hovering
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not only to stabilize their state, but also to generate hydrodynamic force. Boundary
effects may also be important. If the ground or a wall is in close proximity, that
is, if the region occupied by the fluid is not large enough to apply the far-field
approximation, some measurements will depend on the properties of the boundary.
Convergence of the flow to uniformity appears to be a reasonable assumption, but we
have shown that this assumption leads to a similar conclusion to the Stokes paradox.

The relationship between this paradox and real insects should, however, be
considered carefully. The convergence ‘speed’ 1/ log(|〈V 〉|) is so slow that reduction of
the force may not be a practical problem for real insects. Nevertheless, this paradox
is interesting from a theoretical viewpoint, and may provide important insight that
could eventually be applied to the development of a flying machine that can hover
for a long period of time. In this paper, we have used properties of the far field
flow to evaluate the hydrodynamic force of flapping-flight; our method is suited to
treating this kind of problem because the far field is governed by the Oseen equation,
a linear equation, and its qualitative characteristics do not depend on details of the
flapping motion. An analogy may be drawn with the Kutta–Jowkowski theorem, in
which only two properties of the far-field flow of the wing, the circulation of the
wing and the uniform flow, determine the lift. For a more quantitative calculation
of a particular type of wing motion, more detailed information on the far-field flow
induced by the wing motion is required. In the case of three-dimensional steady
flow, Chadwick & Fishwick (2007) have proposed a theory of lift based on the
Oseen model. An extension of this method is under development, and details will be
published elsewhere. It is expected that this result will improve our understanding of
the forces acting on a body in a fluid.

The author would like to thank Professor K. Ohkitani for discussions and Professor
Y. Miyamoto for reading a draft of this paper. This research was partially supported
by a Grant-in-Aid for Young Scientists (B), 2007–2008, 19740228, and Scientific
Research on Priority Areas, 2008–2009, 20033009 from the Ministry of Education,
Science, Sports and Culture of Japan.

Appendix. A proof of Imai’s formula
Imai (1974) derived formulae for the force and moment acting on a moving body in

both two- and three-dimensional space. These formulae are generalized force formulae
derived from the Navier–Stokes equations without approximation. However, the only
existing literature concerning the formulae consists of a conference abstract, written in
Japanese, in which no proof is given. Proof of the force formula for two-dimensional
space is therefore provided here.

A.1. Preparation

For a vector field in two-dimensional space, A = (Ax(x, y), Ay(x, y)) (where Ax and Ay

are real-valued functions of x and y), we consider a complex variable in the complex
plane A(z, z) ≡ Ax + iAy (i =

√
−1), where z = x + iy. In this paper, we refer to this

complex variable as the complex representation of A. This relation will hereinafter
be denoted as A �→ A.

A simple example is:

∂A

∂z
= 1

2
{(∇ · A) + i(∇ × A) · ez} (ez is a unit vector in the z-axis). (A 1)
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nds = (dy, –dx)

Figure 9. Schematic picture of the volume V bounded by C and the line element.

Several formulae for a vector field can be rewritten in the form of a complex
representation. Let us define the line element ds as in figure 9, and n as a unit vector
on C whose direction is outside the boundary.

If A is a complex-valued function of (z, z), the integral of ∂A/∂z over the volume
V bounded by C is given by:∫

V

∂

∂z
AdV = 1

2
i

∮
C

Adz,

∫
V

∂

∂z
AdV = − 1

2
i

∮
C

Adz (A 2)

(Milne-Thomson 1968). The proofs of (A 2) are simple if the formulae are rewritten in
Cartesian coordinates and the Gauss and Stokes theorems are applied. The complex
velocity W is defined as W = u − iv, where u = (u, v) is the flow field. Substituting W

into (A 1) and taking the complex conjugate gives:

∂W

∂z
= 1

2
{(∇ · u) − i(∇ × u) · ez}. (A 3)

In particular, if the flow is incompressible (∇ · u = 0) and irrotational (∇ × u = 0),
then: ∂zW = 0. Because the condition ∂zW = 0 is equivalent to the Cauchy–Riemann
relation, W is an analytic function of z. Using the complex potential f (z), we obtain
the relationship between W and f as:

W =
df

dz
. (A 4)

If the flow is rotational (∇ × u 	= 0), then W is a function of (z, z). Hereinafter,
the flow is assumed to be incompressible such that Re(∂W/∂z) = 1/2∇ · u = 0, but
rotational in general.

By using the streamfunction Ψ such that (u, v) = (∂Ψ /∂y, −∂Ψ /∂x) (equation (2.6)),
we obtain the following relations:

W = 2i
∂Ψ

∂z
, ω = −2i

∂W

∂z
= −4

∂2Ψ

∂z∂z
, (A 5)

where ω ≡ (∇ × u) · ez is the vorticity. We define the total pressure Q by Q =p/ρ +
1/2q2/2, where q2 ≡ u2 + v2 = WW (p is the pressure and ρ is the density).

Using these relations, the Navier–Stokes equations ((2.3) and (2.4)) can be described
by:

i
∂

∂t

∂Ψ

∂z
+

∂Q

∂z
+ ω

∂Ψ

∂z
+ iν

∂ω

∂z
= 0, (A 6)

where ν is the kinematic viscosity (see Imai (1951) for the steady analogue of (A 6)).

A.2. Proof

We consider a body of arbitrary deformable shape moving in a fluid, where B , C and
S are the boundary of the body, the boundary of the control volume that includes
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B , and the volume bounded by B and C, respectively (see figure 6). We assume that
B depends on time, but that C does not depend on time. The integration of the
Navier–Stokes equation (2.3) over the volume S gives:∫

B

σ nds +

∫
C

σ nds +

∫ ∫
S

(
K − ρ

Du
Dt

)
dV = 0, (A 7)

where K is an external force, D/Dt = ∂/∂t + (u · ∇) is the Lagrange derivative, u is
the velocity, σ n = σ · n, n is the normal unit vector on the boundary, and σ is the
stress tensor. The component of the stress tensor is:

σij = −pδij + 2μeij , eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (A 8)

where eij is the component of the deformation rate tensor (ux = u, uy = v), e, and
μ ≡ ρν is the viscosity coefficient. We assume that an external force K has a potential,
and that K can be included in the pressure.

Equation (A 7) is equivalent to:∫
B

(σ n − ρuun)ds +

∫
C

(σ n − ρuun)ds +

∫ ∫
S

(
−ρ

∂u
∂t

)
dV = 0 (un ≡ u · n). (A 9)

Because the force acting on B , F, is F = −
∫

B
σ nds, we obtain:

F = F1 + F2, (A 10)

F1 =

∫
C

(σ n − ρuun)ds, (A 11)

F2 = −
(∫

B

ρuunds + ρ

∫ ∫
S

∂u
∂t

dV

)
. (A 12)

Equations (A 10)–(A 12) can be described using complex forms as follows.
First, we show that:

σ nds �→ ipdz + 4μ
∂2Ψ

∂z2
dz, (A 13)

which can easily be checked using the relations:

−pnds �→ ipdz, e · nds �→ 2
∂2Ψ

∂z2
dz. (A 14)

Next,

unds �→ Im(Wdz)

(
=

∂Ψ

∂z
dz +

∂Ψ

∂z
dz = dΨ

)
. (A 15)

This leads to

−ρuunds �→ −ρW Im(Wdz). (A 16)

Thus, we obtain F1 (F1 �→ F1) as:

F1 =

∮
C

dF1, (A 17)

dF1 = ipdz + 4μ
∂2Ψ

∂z2
dz − ρW Im(Wdz). (A 18)
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The integral element dF1 is rewritten as

dF1 = − 1
2
iρW

2
dz + d

(
iρQz + 4μ

∂Ψ

∂z
+ μωz

)
− 2μz

∂ω

∂z
dz + iρz

∂

∂t
{Re(Wdz)}

+ iρωzdΨ, (A 19)

by using the following relations:

ipdz − ρW Im(Wdz) = iρQdz − 1

2
iρW

2
dz, (A 20)

dQ = − ∂

∂t
{Re(Wdz)} − ωdΨ + 2νIm

(
∂ω

∂z
dz

)
, (A 21)

d

(
∂Ψ

∂z

)
=

∂

∂z
dΨ = − 1

4
ωdz +

∂2Ψ

∂z2
dz. (A 22)

Finally, by using (A 17) and (A 19), F1 is expressed as follows:

F1 =

∮
C

dF1 (A 23)

= − 1
2
iρ

∮
C

W
2
dz − 2μ

∮
C

z
∂ω

∂z
dz + iρ

∮
C

ωzdΨ + iρ

∮
C

z
∂

∂t
{Re(Wdz)} . (A 24)

We now derive the complex form of F2. It is easy to show that:

F2 = −dP0

dt
, P0 = ρ

∫ ∫
S

udV. (A 25)

The complex representation of P0, P0 = ρ
∫

S
WdV , is expressed in the following

two ways:

P0 = ρ

∮
B+C

zdΨ, (A 26)

P0 = −iρ

∫
S

zωdV + 1
2
iρ

∮
B+C

z(Wdz + Wdz). (A 27)

Equations (A 26) and (A 27) are obtained as follows. We substitute A= zW and
A = zW into (A 2) to obtain:∫

S

WdV + 1
2
i

∫
S

zωdV = 1
2
i

∮
B+C

zWdz, − 1
2
i

∫
S

zωdV = − 1
2
i

∮
B+C

zWdz. (A 28)

The sum of the two equations gives:∫
S

WdV = 1
2
i

∮
B+C

z(Wdz − Wdz) =

∮
B+C

zdΨ. (A 29)

The difference of the two relations gives:∫
S

WdV + i

∫
S

zωdV = 1
2
i

∮
B+C

z(Wdz + Wdz). (A 30)

By using the identities (A 29) and (A 30), we can prove that (A 26) and (A 27),
respectively.
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We now calculate the time derivative of P0. Equation (A 26) leads to:

dP0

dt
=

d

dt

{
ρ

∮
C

zdΨ

}
− d

dt

{
ρ

∮
B

zdΨ

}

= iρ

∮
C

z
∂

∂t
{Re(Wdz)} − d

dt

{
iρ

∮
C

zWdz + ρ

∮
B

zdΨ

}
(A 31)

by using the relation zdΨ = izRe(Wdz) − izWdz (note that C is time-independent).
Equation (A 27) leads to:

dP0

dt
=

d

dt

{
−iρ

∫
S

zωdV − 1
2
iρ

∮
B

z(Wdz + Wdz)

}
+ iρ

∮
C

z
∂

∂t
(Re(Wdz)). (A 32)

In summary, we have two expressions for F2:

F2 =
d

dt

{
iρ

∮
C

zWdz + ρ

∮
B

zdΨ

}
− iρ

∮
C

z
∂

∂t
{Re(Wdz)} , (A 33)

F2 =
d

dt

{
iρ

∫
V

zωdV + 1
2
iρ

∮
B

z(Wdz + Wdz)

}
− iρ

∮
C

z
∂

∂t
(Re(Wdz)). (A 34)

The final expression for F = F1 + F2 is now:

F = − 1
2
iρ

∮
C

W
2
dz − 2μ

∮
C

z
∂ω

∂z
dz + iρ

∮
C

ωzdΨ − d

dt
P, (A 35)

where

P = −iρ

∫
S

zωdV − 1
2
iρ

∮
B

z(Wdz + Wdz), (A 36)

or

P = −iρ

∮
C

zWdz − ρ

∮
B

zdΨ. (A 37)

Equations (A 35)–(A 37) comprise Imai’s force formula, first derived by Imai (1974).
If the flow is steady and irrotational such that ω = 0, d/dt = 0, we obtain the Blasius

formula: F = − 4(i/2)ρ
∮

C
W

2
dz. The first term on the right-hand side of (A 36) is the

hydrodynamic impulse in the two-dimensional case.
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